

ZHAW – Wädenswil Competence Center for Biocatalysis (CCBIO)

Prof. Dr. Rebecca Buller

"uses enzymes to catalyze reactions in synthetic chemistry"

Biocatalysis and Biosynthesis

Applications

- production of pharmaceutical blockbuster molecules/ drug discovery
- fine chemicals (aroma, fragrances, nutraceuticals) and
- commodity chemicals from sustainable resources

Future Applications

novel compounds

Mission

- Promote Biocatalysis and Biosynthesis as a complementary method to chemical synthesis
- Bundle relevant research competences in Switzerland
- Help *bridge the gap* academic laboratories the production plant
- Develop a comprehensive *biocatalytic toolbox*
 - enzyme libraries/ biocatalytic methods
- Train scientists to work in this interdisciplinary environment

Lowering barrier of acceptance for using biocatalysis and biosynthesis

Platform Members

Prof. Dr. Regine Eibl Cell Culture Technology

Prof. Dr. Dieter Eibl Biotechnology

Dr. Lukas Neutsch Bioprocess Technology

Dr. Christin PetersProf. Dr. Caspar DemuthBiosystems TechnologyAnalytical Technology

Prof. Dr. Martin SieversDr. Peter RiedlbergerMicro- & Molecular BiologyChemical Engineering

Prof. Dr. Achim Ecker Industrial Chemistry

Prof. Dr. Rainer Riedl Active Substance Research

Prof. Dr. Rebecca Buller Biocatalysis

Biocatalysis Group at ZHAW

Head: Prof. Dr. Rebecca Buller

Research scientists PhD students Master and Bachelor students

Funding and Collaborations

Our Research Projects

Enzyme Families

- α-Ketoglutarate-dependent Oxygenases
- Halogenases
- Squalene-Hopene Cyclases
- Ene-Reductases
- Microbial Epimerases
- PETase

Technologies

• Algorithm-assisted enzyme engineering

 Automation-assisted enzyme engineering

with platform member **Christin Peters** (ZHAW) and industrial partner **Firmenich**

Development of an Ene Reductase-Based Biocatalytic Process for the Production of Flavor Compounds Org. Process Res. Dev, 2022. A. Papadopoulou, C. Peters, S. Borchert, K. Steiner, R. Buller.

Co-funding: Innosuisse

Development of an Ene Reductase-Based Biocatalytic Process for the Production of Flavor Compounds Org. Process Res. Dev. June 14, 2022

• Challenge

Find a biobased alternative to metal-or chemocatalyzed double bond reductions for the F&F industry

Method

Ene reductases catalyze reduction of activated alkenes \rightarrow Screen a wild-type ene reductase library (20 enzymes)

• Results

Pbr-ER (*Pseudomonas brassicacearum*): 2*E*-decenal reduction (40g/L, 100mL scale), conversion >93% / 24h Active as well on undisclosed compound **2**

with Uwe Bornscheuer (University of Greifswald) und industrial partner Syngenta Crop Protection AG

Algorithm-aided engineering of aliphatic halogenase WelO5* for the asymmetric late-stage functionalization of soraphens *Nat. Commun. 2022.* J. Büchler, S. Honda Malca, D. Patsch, M. Voss, N. J. Turner, U. T. Bornscheuer, O. Allemann, C. Le Chapelain, A. Lumbroso, O. Loiseleur and R. Buller

Co-funding SBFI-P-14 Innovation in Biocatalysis/ NCCR Catalysis

Biochemical characterization of selected WelO5* variants

Identification	WelO5* variant	app. <i>k_{cat}</i> [min ⁻¹]	TTN
initial library 3-site combinatorial library ML predicted	V81G_I161P V81S_A88L_I161P V81V_A88L_I161 A	$\begin{array}{c} 0.026 \pm 0.007 \\ 2.413 \pm 0.349 \\ 1.959 \pm 0.509 \end{array}$	$\begin{array}{c} 0.30 \pm \ 0.2 \\ 30.0 \pm \ 8.3 \\ 91.8 \pm 22.0 \end{array}$

Algorithm-aided engineering of aliphatic halogenase WelO5* for the asymmetric latestage functionalization of soraphens Nature Communications. January 18, 2022

Challenge

Soraphen A is a potent natural antifungal - diversification Find enzymes for controlled halogenation of sp³ carbon

Method

Build Soraphen A/ WelO5* model \rightarrow use smart library design and machine learning \rightarrow variants of halogenase WelO5* \rightarrow chlorination activity

• Results

Smart library \rightarrow enzymes accepting **polyketide** substrates Machine learning \rightarrow switch regioselectivity

Test on pathogen fungi \rightarrow chlorinated compounds are active \rightarrow starting point for further structure-function studies

with industrial partner **Novartis** Institutes for BioMedical Research

Enzyme engineering enables inversion of substrate stereopreference of the halogenase WelO5* *ChemCatChem*, 2022.
M. Voss, S. Hüppi, D. Schaub, T. Hayashi, M. Ligibel,
E. Sager, K. Schroer, R. Snajdrova & R. M. U. Buller

Co-funding SNF: NCCR Catalysis

Enzyme Engineering Enables Inversion of Substrate Stereopreference of the Halogenase WelO5* ChemCatChem October 24, 2022

Challenge

Regio- and stereoselective halogenation of sp³ carbon Racemic resolution of a mixture of stereoisomers generated during synthesis of a **martinelline-derived fragment**

Method

3-site combinatorial library → test on a martinelline-derived fragment isomers

• Results

Two enzyme variants identified → inverse stereopreference
Difference: three aa residues in active site
Selective halogenation of one isomer in a mixture

Conferences

2018 2021

4th CCBIO Symposium "Industrial Biocatalysis"

June 8th, 2023

Confirmed speakers:

Sabine Flitsch, University of Manchester (UK)
Pablo Iván Nikel, Technical University of Denmark (DK)
Florian Rudroff, TU Wien (AT)
Mélanie Hall, University of Graz (AT)
Thierry Schlama, Novartis (CH)

Gerard Roelfes, University of Groningen (NL)
Jared Lewis, Indiana University Bloomington (US)
Xiongyi Huang, John Hopkins University Baltimore (US)
Jörg Pietruszka, Heinrich-Heine-Universität Düsseldorf (DE)
Caroline Paul, TU Delft (NL)
Christian Willrodt, BASF SE, Ludwigshafen (DE)

Competence Center for **Biocatalysis**

Connect with us: rebecca.buller @zhaw.ch www.zhaw.ch/ccbio

